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One of the basic problems of approximation theory is the behavior of the
best approximation operator. Indeed, the stability theory of computational
processes [1] leads one to the problem of determining when the best approxi
mation operator is Lipschitz continuous. In this paper, the implicit function
theorem is used to analyze the continuity properties of the best approximation
operator in a real inner product space for a certain class of nonlinear approxi
mating families that include ordinary rational functions and the exponential
family as examples. Under appropriate hypotheses it will be determined
that the best approximation operator is in fact Frechet differentiable, and
hence, Lipschitz continuous. The results can be extended to any space with
a twice Frechet differentiable norm.

Let H denote a real inner product space, EN real N-space, S an open subset
of EN, and A a continuous map from S to H. Then givenfE H, one seeks to
approximate it by elements of A(S) = {A(x) I XES}. The best approximation
operator §:' is the set valued map that assigns to eachfE H the set of closest
points to fin A(S). To consider ofF as a function we restrict it to the subset
of H on which its value is a singleton.

The problem of approximating f is equivalent to finding a minimum for
the functional F(f, x) = [A(x) - f, A(x) - f] as x ranges over S where
[', .] is the inner product on H. If one assumes that the map A has two
Frechet derivatives at each point of S, then necessary conditions for an
element XES to minimize F are given by:

(1) F'(f, x, h) = 0, for all hE EN,

(2) F"(f, x, h, h) ~ 0, for all hE EN.

Here F'(f, x, .) and F"(f, x, " .) are, respectively, the first and second
Frechet derivatives of the map F with respect to x. Using the chain rule and
partial differentiation [2, p. 685] we have

!F'(f, x, h) = [A(x) - f, A'(x, h)],
!F"(f, x, h, h) = [A'(x, h), A'(x, h)] + [A(x) - f, A"(x, h, h)],
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where
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N

A'(x, h) = L (8Aj8xj)(x) hj ,
J~1

N N

AI/(x, h, h) = I L (82Aj8xi 8x})(x) hih j ,
'~1 J~1

Using the above formulas, conditions (1) and (2) can be recast in the form

(1)' ljJ(f, x) = °
(2)' <h, DljJ",(f, x)(h» ;;;:, 0, for all h E EN,

where

ljJ(f, x) - ([A(x) - f, (8A(8x1)(x)], ... , [A(x) - f, (8A(8xN )(x)])T,

DljJ",U; x)O is the derivative of ljJ(f, x) with respect to x, and C .) is the
usual inner product on EN. The properties of ff' will be determined by
examining the solutions of (1)'.

EXAMPLE 1. Let H = L 2[0, 1] and R~[O, 1] - {ao + ... + anxn(bo + ... +
bmX"' Ibo + + bmxm > 0, for all x E [0, I]} and S = {(ao ,... , an, b1 ,... , bm) I
1 + b1x + + bmxm > ° for all x E [0, I]}. Define A: S -+ H by
A(ao ,... , an , b1 ,... , bm) = (ao + ... + anx n)((1 + b1x + ... + bmxm). Since
every r E R~[O, 1] has a representation with bo = 1 we have that
A(S) = R;;'.[O, 1]. For the calculation of the necessary derivatives, see [4].

EXAMPLE 2. Let H = L 2[0, 1] and S = E2N and define A by
N

A(a1 ,... , an, t1 ,... , tN ) = Lj~1 aJet,x.

THEOREM 1. Let X o E Sandfo E H be such that

(i) ljJ(lo, x o) = °
(ii) in~lhlH <h, DljJ",(fo , xo)(h» > 0, and assume that the map

x -+ AI/(x, " -) is continuous on S. Then there exists a neighborhood U offo
and a neighborhood Vofxo with VC S and a function x(·): U -+ EN such that

(a) ljJ(f, xU» = O,/or allfE U

(b) xU) E V,for all fEU

(c) ljJ(f, x) = 0, with fE U and x E V implies that x = xU)

(d) xO is differentiable on U with x'(f, g) = -DljJ;I(f, xU» X

(Diflf, xU»( g», for all g E H, where Diff(f, x)O is the partial derivative
of if(f, x) with respect to f
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Proof By direct calculation, the matrix representing Dif!.,(/o, xo)(')
is given by (a,;) = ([A(xo) - f, (o2Alox,ox;)(xo)] + [(oAloxlxo), (oAI OXj)(xo)]),
while Dif!tClo, xo)( g) = ([-g, (oAlox1)(xo)], ..., [-g, (oAloXN)(XO)])T. By (ii),
Dif!xCfo, xo) is positive definite so that Dif!;,\/o, xo) exists. Moreover, from
the above formulas, the maps (f, x) --+ Dif!x(f, x)O and (f, x) --+ Dif!f(f, x)O
are easily seen to be continuous on H X S --+ B(Ho{, EN) and H X S--+
B(H, EN), respectively, where B(F, G) denotes the set of bounded linear
operators from the normed linear space Fto the normed linear space G. Thus,
using the (general) implicit function theorem [3, p. 230] we have that (a)-(d)
hold. I

Remark I. It is not difficult to show that if the map A has k continuous
derivatives, then the map x(·) has at least k - 1 continuous derivatives on U.
In particular, it is continuously differentiable on U.

COROLLARY I. Let 10 , xo, U, and V be as in Theorem I. Then the map
xC') is Lipschitz continuous at10 .

Proof Dif!x(fo, xo) is symmetric and positive definite so that
II Dif!;\/0 , xo)11 = I/A.*(fo, xo), where A.*(fo, xo) is the smallest eigenvalue
of Dif!xC/o , xo). (Here, of course, we are using the spectral norm.) As noted
in the proof of Theorem 1, the elements (and hence, the eigenvalues) of
Dif!xCf, x) are jointly continuous functions of I and x. Hence, there is a
neighborhood Uo X VoC U X V of (fo, xo) such that for all (f, x) E Uo X Vo,
we have that II Dif!;,l(f, x)11 ,,;; () < 00. Also, it is clear that we can assume
that II Dif!f(f, x)OII is bounded on Uo X VO' Thus, for some constant K > 0
depending on/o we have that

II x'(f, ')11 ,,;; II Dif!-;\f, x(f))011 . II Dif!t<f, x(f))011 ,,;; K < 00

for all IE Uo '

Hence, by the generalized mean value theorem [3, p. 149] we have that for
any IE Uo , II x(f) - x(fo)II ,,;; Kill -.fo II· I

COROLLARY 2. Let10' Xo , U, and V be as in Theorem 1 and let p: U --+ A(S)
be defined by p(f) = A(x(f)). Then p is differentiable on U.

Proof Chain rule. I
We shall need the following definitions.

DEFINITION 1. An element A(x) E A(S) is called a normal point if

(i) A'(x,') is one to one.

(ii) A-IC') exists and is continuous on a relatively open neighborhood
of A(x).
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DEFINITION 2. A subset M of a normed linear space X is called approxi
matively compact if for each x E X and each sequence {m v} C M with the
property that II x - mv II -- inf"'EM II x - m II there exists of subsequence of
{m v} converging in the norm topology to some element of M.

Remark 2. It is simple to show that if M is approximatively compact
in S, then each x E X has at least one closest point in M.

It is evident that to establish smoothness of the operator T at a point
f E H at which it is single valued, it is necessary to know that T is single valued
on some neighborhood off. We will now determine conditions under which
this is true. The proof of the following lemma may be found in [6, p. 388].

LEMMA 1. Let M be an approximatively compact subset of a normed
linear space X and suppose x E X is such that x has a unique closest point
m* in M. Then, if {xv} is any sequence converging to x and if {mv} is any set
of corresponding closest points in M, m v -- m*.

THEOREM 2. Assume that the closure of A(S) in H, denoted by cl(A(S))
is approximatively compact and that A"(x, " .) is continuous on S. Suppose
to E H is such that fo has a unique closest point in cl(A(S)), which lies in A(S),
say A(xo), which is a normal point. Assume also that

inf <h, DifJ.,(fo , xo)(h) = "I > O.Ilhll=1

Then there is a neighborhood V offo such that each g E V has a unique best
approximation in A(S).

Proof. The proof is a modification of [4, Theorem 2]. Suppose the result
is false. Then there is a sequence {gv} C H, gv --fo such that gv does not have
a unique best approximation in A(S). Assume first that some subsequence
of {gv}, which we do not relabel, fails to have a best approximation in A(S).
Let {mv} be any corresponding sequence of best approximations from cl(A(S).
By Lemma 1, mv -- A(xo), and by Theorem 1, there is a neighborhood Vo
of to and a neighborhood Vo of X o with Vo C S and a map xO: Vo-- EN
such that (a)-(d) of Theorem 1 hold. Moreover, from the joint continuity of
the map (f, x) -- <-. DifJ.,(f, x)O), there exists a neighborhood VI X VI
of (10 ,xo) such that for all (f, x) E VI X VI' inftlhll-1 <h, DifJ",(f, x)(h) ;?
"112 > O. According to the hypothesis II gv - m v II < I[ gv - A(xv)11 (where
Xv denotes x( gv) for all v, and since mv E cl(A(S)), there is a Yv E S such
that I[ A(yv) - mv II < llv and [I gv - A(Yv)11 < II gv - A(xv)ll. Clearly,
A(yv) -- A(xo), and by normality, Yv -- Xo ' Hence, for sufficiently large v,
(gv, Yv) E (Vo n VI) X (Von VI) - V X V. But then using Taylor's theorem,

F(gv, Yv) = F(gv, xv) +F'(gv, xv, Yv - xv)
+ IF''(gv, tffv , Yv - xv, Yv - xv),
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where iffv = ()vxv + (1 - ()v) Yv for some ()v E [0, I]. Since
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by (a) of Theorem I and iffv E V for sufficiently large v we conclude that
F( go, Yv) > F( go, x v), a contradiction. Thus, a neighborhood U exists for
which each g E U has a best approximation in A(S).

To establish uniqueness, again assume the conclusion of the theorem is
false and find a sequence {gv} C U converging to f such that each gv has at
least two distinct best approximations say A(y,,) and A(yv') in A(S). By
Lemma I and normality of A(xo), Yv -+ Xo and Yv' -+ Xo ' Then°= 0/( gv ,y.o) = 0/( gv ,Yv') and so by Theorem I for large enough v,
Yv = Yv/ = x( gv), a contradiction. I

THEOREM 3. Let A and fo E H be as in Theorem 2, where again A(xo)
denotes the unique best approximation to fo from cl(A(S)). Then there is a
neighborhood U of fo on which the best approximation operator g; is
continuously differentiable.

Proof By Theorem 2 there is a neighborhood U of fo on which g; is
uniquely defined and it is clear from the proof that U can be chosen so that
for each g E U, g;g = A(x(g)). The theorem then follows immediately from
Theorem I, Corollary 2, and Remark I. I

For the special case when A(S) = R;:'[O, I], we have the following stronger
result.

COROLLARY 3. Let A(S) = R~,[O, I] and H = L 2[0, I], where A and S
are as in Example 1. Then there is an open and dense subset ofL 2[0, I] on which
the best approximation operator T is continuously differentiable.

Proof The set R;:'[O, I] is approximatively compact [5] and by [4,
Theorem 4] the set of elements f satisfying the hypotheses of Theorem 2
contains an open and dense subset of H. Applying Theorem 3 to each such r
we obtain the required open and dense subset of H. I

Corollary 3 indicates a fairly strong uniqueness result for rational approxi
mation. However, we have the following result regarding local best approxi
mations.

COROLLARY 4. Suppose f E H and Xl'"'' Xk are such that Do/if, Xi) is
positive definite and rf;(f, Xi) = 0 for i = I, ... , k, Then there is an open ball B
aroundf in H such that for each g E B the function [A(x) - g, A(x) - g] has
at least k isolated local minima in S.
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Proof. Applying Theorem 1 k times, we find neighborhoods Uj of fo
and corresponding neighborhoods Vj of Xj j = 1,..., k and maps x;(-)
j = 1,... , k sending Uj into Vj • By Lipschitz continuity of x;(-), we can
restrict each Uj so that V j II Vi = 0 unless i = j. Then, letting U = n~=l Ui ,
we have that for each g E U the functional [A(x) - g, A(x) - g] has an
isolated local minimum in Vj j = 1,... , k. I

Remark 3. The existence of functions 1 satisfying the hypotheses of
Corollary 4 for arbitrary k is shown in [4] for the case when A(S) is the set
Rmn[o, 1]. Moreover, the minima may be arbitrarily close together so that
the practical problem of calculating a global minimum of II A(') - 1112 can
be quite difficult. That is, a unique global minimum may have several local
minima located nearby.
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